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We develop a systematic analytic approach to the problem of branching and
annihilating random walks, equivalent to the diffusion-limited reaction processes
2A -» 0 and A -> (m + 1) A, where in ̂  1. Starting from the master equation, a
field-theoretic representation of the problem is derived, and fluctuation effects are
taken into account via diagrammatic and renormalization group methods. For
d > 2, the mean-field rate equation, which predicts an active phase as soon as the
branching process is switched on, applies qualitatively for both even and odd in,
but the behavior in lower dimensions is shown to be quite different for these two
cases. For even m, and d near 2, the active phase still appears immediately, but
with nontrivial crossover exponents which we compute in an expansion in
e = 2 — d, and with logarithmic corrections in d=2. However, there exists a
second critical dimension d'c «4/3 below which a nontrivial inactive phase
emerges, with asymptotic behavior characteristic of the pure annihilation process.
This is confirmed by an exact calculation in d= 1. The subsequent transition to
the active phase, which represents a new nontrivial dynamic universality class, is
then investigated within a truncated loop expansion, which appears to give a
correct qualitative picture. The model with m = 2 is also generalized to N species
of particles, which provides yet another universality class and which is exactly
solvable in the limit N -> oc. For odd m, we show that the fluctuations of the
annihilation process are strong enough to create a nontrivial inactive phase for all
d<2. In this case, the transition to the active phase is in the directed percolation
universality class. Finally, we study the modification when the annihilation reaction
is 3A -> 0. When m = 0 (mod 3) the system is always in its active phase, but with
logarithmic crossover corrections for d=l, while the other cases should exhibit
a directed percolation transition out of a fluctuation-driven inactive phase.
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1. INTRODUCTION

Reaction-diffusion processes, in addition to being of direct physical interest,
present a relatively simple class of non-equilibrium stochastic processes in
which the role of fluctuations, so important to the study of equilibrium
statistical physics, may be investigated.(1) Although such processes have
been studied for many years through various kinds of mean-field or self-
consistent approximations, more recently there has been some progress in
taking into account the effects of fluctuations through the use either of
exact methods or of systematic renormalization group theories,(2) backed
up by extensive numerical simulations.

It has become clear that, once the constraints of detailed balance are
abandoned, these systems may exhibit a greater richness of phenomena
than their counterparts close to equilibrium, leading, for example, to new
types of critical behavior characterized by new universality classes. It might
appear that the freedom allowed by giving up detailed balance would lead
to such an unacceptably large number of possibilities as to make the con-
cept of universality of limited usefulness, and indeed, from the point of view
of the proliferation of microscopic cellular automaton models this would
seem to be true. However, as with equilibrium phenomena, the introduc-
tion of a coarse-grained description through a field-theoretic formalism
makes it possible, at least in principle, to make a universal classification
feasible.

All such coarse-grained descriptions of stochastic processes, whether
or not they satisfy detailed balance, divide the dynamics into two parts: a
deterministic evolution corresponding to the mean-field dynamics, and the
noisy effect of fluctuations ignored in such a description. When detailed
balance is present, the form of the noise is prescribed, so that the field-
theoretic version of the coarse-grained description is narrowly determined.
In the absence of detailed balance this is not so, yet it may be shown that
the particular form of the noise chosen is crucial to determining the univer-
sal behavior near a non-equilibrium critical point. One way to avoid this
ambiguity, which works very well for reaction-diffusion processes, is to
develop a field-theoretic description of the problem which is exact, being
directly derived from the underlying master equation, and to perform
coarse-graining, in terms of a derivative expansion, only at a later stage.
This method, developed some time ago by Doi and by Peliti(3,4) (see also
ref. [5]), relies on the use of a Fock space formalism very similar to that
employed for quantum many-body systems. More recently, field-theoretic
renormalization group methods have been systematically applied to the
dynamic field theories describing some simple processes to obtain what is,
in principle, a complete characterization of their universal properties.(6-8)
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It is the purpose of this paper to describe such a field-theoretic
investigation, largely but not entirely based on renormalization group
methods, into a class of reaction-diffusion processes which are charac-
terized by their description in terms of branching and annihilating random
walks. (A very brief account of this work has been presented in ref. [9].)
These processes were originally studied in the 1980s by Grassberger el
al.(10) as exceptions to the apparent rule that systems exhibiting non-equi-
librium transitions from a trivial absorbing state into a nontrivial noisy
"active" state should be in the same universality class as directed percola-
tion (DP). While this terminology originally refers to a realization of this
universality class describing percolation processes which are asymmetric
with respect to a privileged space dimension,(12) more commonly it now
applies to a dynamic universality class in which this dimension is inter-
preted as time. In terms of reaction-diffusion processes, an example of
such a system would be one with a single species of particle A, undergo-
ing diffusive behavior, single-particle annihilation A -> 0, and branching
A-*2A. There is always a trivial absorbing state, with no particles and
consequently no fluctuations. For sufficiently low branching rate, this is
the only stationary state, but for larger values of this rate, another, non-
trivial "active" stationary state appears. The DP transition occurs at the
point where this state first appears. The robustness of the DP universality
class has been tested by measuring its critical exponents in numerical
simulations on many different types of system, and may be understood in
terms of the simplicity and irreducibility of the dynamic field theory which
describes it.(13) Indeed, this "Reggeon" field theory was first studied in a
completely different context of particle physics. Among the non-equi-
librium phase transitions described by this universality class are those
occurring in the contact process,(41) the dimer poisoning problem in the
Ziff-Gulari-Barshad model,(15) and in certain autocatalytic reaction
models.(16)

The model studied by Grassberger el al.(10) was a rather complicated
probabilistic cellular automaton in one space and one time dimension, with
antiferromagnetic interactions in which the "particles" actually appear as
kinks or domain walls. It was observed that, while this model appears to
exhibit a transition from an inactive, absorbing state to a nontrivial active
state, the various critical exponents are far from those of directed percola-
tion. The authors of ref. 10 already realized that this may be a result of the
fact that these kinks are conserved modulo 2 in the basic dynamics, but a
subsequent field-theoretic analysis of this problem appeared to shed no
light on this discrepancy: rather it suggested that the system should, once
again, be in the DP universality class, indicating that there was apparently
no way of taking into account the constraint of local "parity" conservation
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in a field-theoretic treatment.(11) One of the main points of our analysis is
to show where this argument went wrong, and why such systems, at least
in low dimensions, should be in a new universality class.

Subsequent work showed that similar effects occur in other systems
with such a conservation law, and suggested that, at least in one dimen-
sion, they all fall into this new universality class, characterized by branching
and annihilating walks with an even number of off spring. ( l7-20) These are
reaction-diffusion systems with the underlying reaction processes 2A -» 0
and A-*(m+l) A, with m even. In one dimension, when m = 2, another
realization of this universality class occurs in certain classes of dynamic
Ising models which violate detailed balance,(10,11,21) where once again the
"particles" correspond to domain walls. In this case, the transition from the
inactive phase (no domain walls in the asymptotic stationary state) to the
active phase corresponds to the disordering transition of the Ising
spins.(22,23) In addition, other realizations of this universality class have
been found and also been investigated numerically.(24,25)

On the other hand, when m is odd and there is no conservation law,
one expects to recover the DP exponents, and this appears to be the case,
at least in one dimension.(10,17,26,27) In higher dimensions, the numerical
situation is less clear. Takayasu and Tretyakov, in rather short simulations,
found no evidence for a nontrivial transition for d^-2, for either m even or
odd.(17) This is certainly consistent with the picture obtained from mean-
field theory, as we shall see. But the situation in two dimensions is, we
believe, more subtle. It is just this dimension at which the fluctuation effects
become important in the pure annihilation process 2A -> 0, giving
logarithmic corrections to scaling, and they cannot therefore be ignored
there. In fact we find in our analysis that these fluctuation effects are suf-
ficient to drive the existence of an inactive phase for small but finite values
of the branching rate, at least for odd m, and hence the existence of a sub-
sequent transition in the active phase, which is in the two-dimensional DP
universality class.

For m even, on the other hand, the fluctuations are not effective until
a second, lower critical dimension which we estimate to be w 4/3, and which
is certainly above d=1. The existence of two critical dimensionalities make
a systematic e-expansion type of approach to this problem infeasible.
However, we have performed a truncated loop expansion which has the
correct fixed point structure to describe the new d = 1 universality class.
One striking feature of this is the existence of dangerous irrelevant
variables which make the identification of the various critical exponents in
terms of RG eigenvalues slightly delicate. In fact, we may only make this
identification strictly in the active phase, and our analysis leaves open the
possibility of violations of the scaling relations between these exponents
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("active state"). Provided the "mass" mam is positive (and n 0 >0) , the solu-
tion of Eq. (1.4) approaches the asymptotic density ns exponentially for
t-» oc,

On the other hand, if am = 0, this exponential long-time behavior is
replaced by a power-law decay,
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and those at the critical point and in the inactive phase, which have been
written down on the basis of simple scaling arguments.

Our aim, therefore, is to investigate the following competing reaction
processes of identical particles A, which perform a random walk with diffu-
sion constant D:

with k, m integers, k ^ 2, and m ̂  0; "0" denotes an inert state. Occa-
sionally, we shall in addition allow for a spontaneous creation of particles
in pairs,

The corresponding mean-field rate equation for the average density
n(t), neglecting any local fluctuation effects, reads

with an initial density n(0)=n 0 . If we set the pair production rate, which
acts as an "external field," to zero, Eq. (1.4) has the stationary solutions
n = 0 ("inactive state") and



Therefore, both particle production processes appear to be relevant pertur-
bations to the pure annihilation reaction, and for am = r = 0 the annihila-
tion rate becomes dimensionless at the (upper) critical dimension dc =
2/(k— 1). Thus, one expects the mean-field rate equation (1.4) to provide
an at least qualitatively correct description for d>2 in the case k = 2, and
for d> 1 in the case k = 3. Because of the relevant perturbation vm, the
situation at the critical dimension already requires a careful analysis, and
certainly for d<dc fluctuation effects need to be taken into account
seriously. E.g., for the pure annihilation process with k = 2 it is known
exactly that Eq. (1.7) is replaced by the slower asymptotic decay
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In this sense, am = ac = 0 may be viewed as a critical point, described by
the following set of critical exponents

characterizing the long-time decay at the critical point, and the growth of
the asymptotic density in the active phase, respectively; according to
Eqs. (1.5) and (1.7) their mean-field values are <x0 = /20= \l(k— 1). Taking
into account the diffusive propagation of local density fluctuations, two
more independent exponents may be introduced which describe the diver-
gence of the characteristic length and time scales as the critical point is
approached,

with the mean-field values v0= 1/2, v r 0= l/(d + 2), and z0 = 2.
These mean-field exponents of course originate in the scaling dimen-

sions of the parameters D, Ak, am, and r of the model. Introducing a
momentum scale K, and measuring times in terms of lengths squared,

(as the particle density scales as an inverse volume in d dimensions),
Eq. (1.4) implies the "naive" dimensions



due to strong particle anticorrelations which cannot be smoothened out by
the diffusion in low dimensions.(3,4,6) At d=2 for k = 2 and d= 1 for A'= 3,
one finds logarithmic corrections to Eq. (1.7). However, for k ft 4 the above
rate equation should be essentially correct in all physical dimensions. In the
bulk of this paper, we shall therefore be concerned with the case k = 2, and
only briefly discuss the three-particle annihilation reaction (k = 3) com-
bined with branching in Section 8.

The outline of the rest of this paper is as follows. After introducing the
field-theoretic description of these processes, with an emphasis on the sub-
tleties which occur when correctly taking into account processes in which
a conservation law is satisfied, in Section 3 we look close to the critical
dimension d=2 of the pure annihilation reactions to discover whether the
branching processes are relevant (thus leading immediately to the active
phase) or otherwise. For m even we find that they are in fact irrelevant
close to two dimensions, leading to a transition into the active phase at
zero branching rate, with, however, non-mean-field exponents which may
be evaluated within an s expansion. This calculation suggests, however,
that this situation might be reversed in sufficiently low dimensions, and in
Section 4 we confirm this by an exact calculation in one dimension, using
both field-theoretic and exact lattice methods. The subsequent nontrivial
transition into the active phase is described within the truncated loop
expansion in Section 5, and the various subtleties connected with the
unusual fixed point which emerges are investigated. Comments are given
on the feasibility of extending this calculation to higher orders. In Section 6
a generalization to N species is introduced and solved, in the hope of
elucidating the case N=1. However, it turns out that the behavior as soon
as N ^ 2 is quite different, leading to yet another universality class. In the
next Section we turn to the case of m odd, and use diagram resummation
and RG methods to argue that for d^2 the fluctuation effects drive the
existence of a nontrivial inactive phase, counter to the predictions of mean-
field theory. After a brief discussion in Section 8 of the corresponding set of
problems when branching is added to the three-particle annihilation pro-
cess 3A -* 0, we conclude with a summary of our results and possible
directions for future theoretical and numerical work in this area.

2. MASTER EQUATION AND FIELD THEORY

In order to include fluctuation effects systematically in a mathematical
description of the diffusion-limited reactions (1.1)-(1.3), we first write down
the corresponding master equation and then derive a field-theoretic
representation for it, following standard procedures.(2, 3-5,6, 10) The latter
may then be treated with standard methods like perturbation theory, and
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the long-time and long-distance scaling behavior may be inferred via the
application of the renormalization group.

Master equations for the temporal evolution of the probability dis-
tribution P(a; t) for a configuration a have the general form

where Ra-B denotes the transition rate for the process a -> B. For random
walkers on a lattice (with lattice constant b0) subject to the reactions
(1.1)-(1.3), any configuration is characterized by the integer site occupa-
tion numbers ni, i=1,...,N, with £,«/ = A^fO, and the master equation
may be decomposed into the balance equations for the diffusion, annihila-
tion, branching, and pair production processes at each site i,

where {e} denotes the set of nearest-neighbor sites adjacent to i,

The precise form of the initial state is not important as we shall largely be
considering stationary state properties. For convenience it is simplest to
choose an uncorrelated Poisson distribution

8

and finally

with
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As the configurations are given entirely in terms of the occupation
numbers ni, this calls for a representation in terms of second-quantized
bosonic operators

whose effect on the state

Then, upon defining the time-dependent state vector

is to raise or lower the site occupation number n, by one, respectively:

the master equation (2.2)-(2.6) may be recast into an "imaginary-time"
Schrodinger equation

with the normal-ordered "hamiltonian"

Using the initial state (2.7), the formal solution to Eq. (2.13) reads

Our aim is of course to compute time-dependent expectation values of
observables A, which may be defined in terms of the configuration prob-
ability according to
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for this, we need the projection state

For then, as a consequence of <0| eai> being a left eigenstate of a] with
eigenvalue 1, one has <F| Q({a]}, { a , } } = (P\ Q ( { 1 } , { a i } ) for any nor-
mal-ordered polynomial Q of the ladder operators. Therefore, the expecta-
tion value (2.16) may be written as

Notice also that probability conservation requires

and therefore the hamiltonian generally has to vanish when the creation
operators at are formally set to 1. We remark that in order to calculate
"inclusive" probabilities, such as the expectation value of the local density
ni-(t) = < a j ( t ) ) a i ( t ) > , it is convenient to commute the factor <?£'a<( ')

through the hamiltonian in Eq. (2.18), which is equivalent to a shift of all
aj -> 1 + aj, because then one just has to compute a vacuum exectation
value of a normal-ordered product, for which Wick's theorem applies. Yet,
this is not necessary for the evaluation of "exclusive" quantities, as, e.g., the
probability that site i is occupied by one particle, while all the other sites
are empty, <(5«, i nyv^«,o>- Certainly this shift is not required for the
renormalization of the model, and may in fact be even dangerous (as we
shall see below).

In order to arrive at a field-theoretic representation, we now view the
computation of (2.18) as a bosonic quantum many-particle problem with
the hamiltonian (2.14), and again follow standard procedures(28) to write
the expectation value as a coherent-state path integral

with the effective action
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Finally, we perform the formal continuum limit, using the (assumed) inver-
sion symmetry of the lattice,

which results in the action

According to Eq. (2.20), S has to be dimensionless, and using Eq. (1 .13) we
find the scaling dimensions of the fields to be

and thus recover Eqs. (1.14) and (1.15). As mentioned in Section 1, fluctua-
tion effects are therefore expected to be important in physical dimensions
in the cases k = 2 ( d<2) and A: = 3 (d<1).

It is important to realize that in the above derivation of Eq. (2.23), the
form of the nonlinear terms followed directly from the master equation,
and no further assumptions had to be made about these fluctuation con-
tributions. On the other hand, the mean-field rate equation may be
recovered from this action by considering the "classical" equations of
motion for the fields $ and i/', as given by the stationarity conditions



which, upon identifying \ l / ( \ , t ) with a coarse-grained local density (which
is only possible on this mean-field level), is the natural generalization of
Eq. (1.4).

Notice that for even k and even m the hamiltonian part (in brackets)
of the action (2.23), which does not explicitly depend on the final or initial
state, is invariant under simultaneous "parity" transformations of the fields,

in which the symmetry (2.28) for even k and m is obscured. Even worse,
if in accordance with usual naive power counting arguments only the three-
point vertices are kept and all the higher nonlinearities are disregarded, this
hidden symmetry is lost completely. (Reasoning along these lines led a pre-
vious investigation to the erroneous conclusion that a field-theoretic treat-
ment would predict that the dynamic phase transition for BARW with
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Obviously, Eq. (2.25) has the stationary homogeneous solution $ = 1, and
inserting this into (2.26) yields

Physically, this corresponds to the fact that for even k and m the particle
number is locally conserved modulo 2 by both the annihilation and
branching processes. However, if one expands the action (2.23) about the
stationary solution according to

corresponding to commuting the factor e^-'"! through the hamiltonian in
Eq. (2.18), one arrives at the new action



k = 2 should be in the directed percolation universality class irrespective of
the parity of m. ( 1 1 ) ) For a consistent renormalization group analysis, it is
of course imperative to preserve all the symmetries of the problem. In the
present case, this may be done by observing that the RG equations them-
selves (as opposed to the calculations of observables such as the density)
should be independent of which basis is used, and it is therefore possible,
and, indeed, necessary, to perform the computations in the representation
of the model in which the symmetry for even k and m is manifest, namely
the unshifted action (2.23).

3. BARW WITH TWO-PARTICLE ANNIHILATION NEAR TWO
DIMENSIONS

3.1. RG Eigenvalues at the Annihilation Fixed Point and
Generation of New Processes

We now begin the investigation of fluctuation effects for BARW with
two-particle annihilation (k = 2, /12 = A), based on the action (2.23).
For 0<t<i0, this field theory is characterized by a propagator
@(t) exp[ -(Dq2 + ff) t] (in the time domain) or ( -ico + Dc/2 + a m ) - l (in
the frequency domain), and is graphically represented by a directed line,
see Fig. 1 (a) , and by the vertices corresponding to the annihilation
[Fig. l(b, c)], branching [Fig. l(d)] , and pair production [Fig. l ( e ) ]
reactions, respectively. With these elements, a systematic perturbation
expansion may be constructed applying the usual techniques of quantum
field theory.(29) Taking into account fluctuation effects, we then define the
renormalization constants Z^, Za , and Zr according to

The dimensionless renormalized couplings / and sm introduced here are to
be determined from the vertex functions r$$^( — q/2, —co/2; — q/2, — co/2;
q/2, <u/2; q/2, to/2) and rw^(-q/2, -co/2; -q/2, -to/2; -q/2, -to/2;
3q/2, 3co/2), respectively, at some specified symmetric normalization point
setting a momentum scale K, e.g., q2/4 = K2, w = 0, or q = 0, iio = 2DK2.
In Eq. (3 .1) , Cd= r(2-cl/2)/2ti~l7id/2 denotes a rf-dependent geometric
factor (C, = l/2, C2=l/2n). The renormalized pair production rate T
may be obtained from the vertex function F^ in the time domain, by
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Fig. 1. Elements of the perturbation theory for BARW with k -2: (a) propagator
( — iu> + Dc/~ + <7m) '; ( b , c ) annihilation vertices ). and —/.; (d) branching vertex a„,; and
(e) pair production vertex r.
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introducing a lower cutoff t, and taking the Laplace transform with
respect to /,• at ico = 2DK2. Similarly, the renormalized annihilation and
branching rates t and sm may also be computed from the vertex functions
r^ and r^, respectively, in the time domain with an upper cutoff tf.

Near the upper critical dimension dc = 2, we infer the scaling
behavior by studying first the ultraviolet ( U V ) divergences of the pertur-
bation theory, to be absorbed in the renormalization constants ZA> ZCT ,
and Zr defined in Eqs. (3.1)-(3.3). From the solution of the RG (Callan-
Symanzik) equations for the correlation functions via the method of
characteristics, we derive running couplings given by the differential RG
flow eauations



at such a fixed point of the RG transformation, which is infrared-stable
if/?',(/") >0.

The obvious first question to be addressed is whether the particle
creation reactions with rates am and i remain relevant perturbations to
the pure annihilation process, i.e., whether the critical point remains at
ac = rr = 0, once fluctuation effects are taken into account for d ^ 2
dimensions; and if so, what the corresponding critical exponents are. To
one-loop order, the only UV-divergent Feynman diagrams at clc = 2
which contribute to the renormalization of the annihilation rate A, the
branching rate csm, and the pair production rate T are depicted in
Fig. 2(a-c). These diagrams are identical with the lowest-order contribu-
tions at the annihilation fixed point, where am = r = 0, provided the mass
term oc am in the propagator is set to zero. Upon using the dimensional
regularization and minimal subtraction scheme, one then finds the follow-
ing renormalization constants in d=2 — £ dimensions,

822/90/1-2-2
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which yield the change of /, sm, and T under scale transformations
K-*Ke~' ( the asymptotic regime being approached as l-> x). Here, the
beta and zeta functions follow from the Z factors in Eqs. (3.1)-(3.3)
according to

and the corresponding power laws are given by the anomalous dimen-
sions (RG eigenvalues)

A scale-invariant asymptotic regime is then described by a zero /"* of the
beta function,
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Fig. 2. One-loop diagrams lor the renormalizations of (a) the annihilation vertex /, (b) the
branching vertex a,,,, and (c) the pair production vertex r; (d) the generation of the branching
process oc am 2 through a combination of branching x am and two-particle annihilation.

The factor m ( m + 1 ) / 2 for Z simply originates in the number of
possibilities to select the external legs to the right of the bubble in
Fig. 2(b).

From Eqs. (3.1), (3.7), and (3.13), we infer the beta function

In the pure annihilation model (a,,, = T = 0), this is actually an exact
result, which may be obtained either by summing a geometric series of the
bubble diagrams in Fig. 2(a), or by writing down the equivalent Bethe-
Salpeter equation for the annihilation vertex,(61) leading to



Thus, both these couplings remain indeed relevant near dc = 2.
However, it is important to note that in addition to the original processes
all the lower branching reactions with m — 2, m— 4,... offspring particles
become generated via fluctuations involving combinations of branching
and annihilation processes, see Fig. 2(d). In a consistent RG treatment all
these additional reactions must be incorporated in the effective action from
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and hence (3.16). For d>2 the stable fixed point is just the "Gaussian"
fixed point f* =0, while for d^2 the nontrivial annihilation fixed point

becomes stable and governs the asymptotic behavior. E.g., as there is no
renormalization of the propagator, and hence neither field nor diffusion
constant renormalization in the pure annihilation model, the solution of
the RG equation for the average density may be written as

Near the fixed point (3.18), / ( l ) ->/* , we then match e2l = tK2, and arrive
at the already cited exact result (1.16). Notice that in terms of the fixed
point (3.18) the renormalization constant can be written as

and hence / = l * corresponds to an infinite bare annihilation rate i, c.f.
Eq. (3.1). ( 6 ) Moreover, Eqs. (3.8), (3.9), (3.14), and (3.15) yield the zeta
functions

and according to Eqs. (3 .11) and (3.12) the RG eigenvalues for the
branching and pair production processes at the pure annihilation fixed
point (3.18) become for d^2



The emergence of the spontaneous decay (3.25) alters the behavior of the
system drastically, and in fact leads to a shift of the critical point to ac > 0
for d^2, with the ensuing dynamic phase transition being in the directed-
percolation universality class, and n(t) approaching its asymptotic value
exponentially in both the active and inactive (absorbing) phases. We shall
defer the discussion of the action (3.27) and the derivation of these results
to Section 7.

For even m, on the other hand, just the lower even-offspring branch-
ing processes are generated, and the effective action becomes
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the start. In the case of odd m, the most important of these new processes
is the single-particle annihilation A -> 0. Upon assigning to that the decay
rate u,

which has the scaling dimension

[compare Eq. (1.15)] , the complete effective action reads



The branching process with m = 2 will therefore describe the entire
universality class of BARW with even offspring number m, clearly distinct
from the universality class of BARW with odd m as a consequence of the
underlying "parity" symmetry (2.28), i.e., the conservation of particle
number modulo 2. In the following chapter, we shall derive the critical
exponents for the BARW with m = 2 near two dimensions, and further-
more discuss the logarithmic corrections induced by the marginality of
the annihilation vertex in df = 2.

3.2. The Case m = 2: Critical Exponents near d=2 and
Logarithmic Corrections

We have just argued that the generic universality class of the
dynamic phase transition for BARW with even offspring will be charac-
terized by the critical exponents for m = 2. To one-loop order [see
Figs. 2(a-c)], i.e., to first order in e — 2 — d, we found the RG eigenvalues
(3.29) and (3.24) at the annihilation fixed point (3.18). Hence both a and
T are relevant near dc = 2, and the critical point remains at its mean-field
location <rc = rc = 0. Upon utilizing the mean-field result (1.5), we write
the general solution of the RG equation for the density as
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However, Eq. (3.23) implies that the most relevant of these branching
reactions is actually the one with smallest m, i.e., m = 2, with rate <72 =

 CT

and RG eigenvalue

the pure annihilation result (3.19) is then recovered as s-*Q and
r->0, if we demand that n(x, y, 0) ->y-1 as y->Q and n(x) =
limy_0 [ yn(x, y, 0)]. Therefore at the critical point the density decays as
n(t)oz(-d/2, i.e., using Eq. (1.8),

For nonzero branching and pair production rate, but in the vicinity of
the annihilation fixed point /(l) -»l*, Eq. (3.30) reduces to



Notice also that the exponents v and B diverge as d'c is approached from
above. This would suggest the possibility of an entire inactive phase to
emerge for d<d'c and ff<ffc, i.e., the dynamic phase transition would be
shifted to some positive critical value of the branching rate. For a <ac the
effective branching rate would then scale to zero under renormalization,
and the power laws of the pure annihilation theory would apply. In such
a situation the above scaling relations and values of the critical exponents
would have to be modified considerably.

In order to pursue this issue further, we now determine the RG eigen-
value ya and yr at the annihilation fixed point to second order in e. For
that purpose, we need the UV-divergent two-loop diagrams for the
annihilation and branching vertices, as depicted in Fig. 3(a, b). Taking the
external momenta or frequencies at a symmetry point and using either of
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As lengths scale as e1, the correlation length diverges according to
^ccs~l/y" as s->0 and £ccs~l/y< as T->0; therefore we identify [see Eqs.
(1.10), (1.12)]

Finally, the matching condition e 2 l — t K 2 leads to

which, upon comparison with (3.33) and (1.11) immediately implies

Notice that the relations (3.31), (3.33), (3.35) and (3.36) are exact provided
that erc = TC = 0. Only the RG eigenvalues ya and yr need to be computed
perturbatively, e.g., in an expansion near dc = 2.

Yet, assuming that the one-loop result (3.29) may be extrapolated with
reasonable accuracy to some finite value of s = 2 — d, one finds that the
branching reaction actually appears to become irrelevant for e > 2/3, i.e.,
below a supposedly new critical dimension

Furthermore, for T = 0 and t -> oo the t dependence has to cancel, i.e.,
«(/*, x, 0 )ccx - 1 + l i / y ' ' as x-»oo. Hence with the definition (1.9) we con-
clude that



Fig. 3. UV-singular diagrams (near cl,. = 2) to two-loop order for the vertex functions
(a) r^j,, (b) r^ffo, and (c) r^.

Furthermore, by introducing a lower cutoff ti for the diagrams contributing
to the renormalization of the pair production rate, see Fig. 3(c), one finds

As to be expected, Eqs. (3.7) and (3.38) result in the same beta func-
tion (3.16) as to one-loop order, for the diagrams in Fig. 3(a) are precisely
those of the pure annihilation theory, for which (3.16) holds to all orders
in f, and therefore the fixed point is again f* = e. With Eqs. (3.39) and
(3.40), the zeta functions for the branching vertex (3.8) and for the pair
production rate (3.9) become

them to fix the normalization scale, one may readily compute the Z factors
for X and a, as defined in Eqs. (3.1) and (3.2); using dimensional regulariza-
tion and minimal subtraction, one eventually finds
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with the RG eigenvalue for the pair production rate at the annihilation
fixed point being identical with the one-loop result (3.24).

Eq. (3.43) for ya would indicate that the branching process becomes
irrelevant for d< d"c with
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and thus

and thus imply that in the interesting physical dimension d = 1 a stable
inactive phase exists. Of course, an expansion near the upper critical
dimension dc = 2 can by no means conclusively justify such an assertion.
But we shall see in the following Section 4 that a direct calculation in one
dimension yields that surprisingly the one-loop result (3.23) becomes exact
(with e = 1), and indeed the branching processes with even m are irrelevant
in d = 1 near the annihilation fixed point.

Yet, clearly in two dimensions all the previous results apply, and due
to the marginality of the annihilation vertex induce logarithmic corrections
to the mean-field critical exponents. With Eqs. (3.4) and (3.16) we find the
running annihilation rate

and upon inserting this into Eqs. (3.5), (3.6) and (3.21), (3.22) we may
solve for the flows of s and T as well,

We now employ Eq. (3.30) to infer the scaling behavior in the asymptotic
limit l-> oo, where l(l)oe l-1, s(l) oce2'/"3, and rf/Joce4 '/"1, and thus
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Consequently, upon identifying £, with e' again, and by matching the
second and third argument of n to one, respectively, we find

in addition, from the prefactor of n we infer, using 21 * ln( 1 /s),

Finally, at the critical point s= T = 0, Eqs. (3.49) or (3.19) become

Matching the argument of n to a constant then leads to

which is consistent with the solution of the mean-field rate equation
n = — i ( t ) n 2 with a time-dependent annihilation rate A ( t ) o c l / l n f , see
Eq. (3.46).(6) For large initial densities n0»ns, this logarithmic correction
to the mean-field power-law relaxation may be observable even for nonzero
branching rate, in an intermediate time window (2/l«0)-1 «t «(2tr)~l.
Similarly, the nontrivial logarithmic corrections corresponding to
Eq. (3.47) should appear in the opposite limit n0«ns for times
( 2 a ) - 1 « t « (21n 0 ) - 1 , inducing a subexponential increase

At very long times, however, any positive branching rate will even-
tually lead to a purely exponential approach to ns. This crossover to an
asymptotically Gaussian theory may actually be described by simply keep-
ing the mass term a in the propagator for the one-loop diagrams depicted
in Fig. 2(a-c), which then results in the following beta and zeta functions,



and its flowing counterpart g(l) will vanish as l-»oo because of the
divergence of s(l) , as long as 5 remains a relevant coupling. In this situa-
tion, i.e., for d>d'c, the Gaussian fixed point g* = 0 describing the active
phase is approached, and the above flow functions (3.56)-(3.58) assume
their mean-field values, see Section 5.

In summary, we have found that near two dimensions the BARW with
even offspring, described by the universality class of m = 2, are charac-
terized by a critical point at vanishing branching and pair production rate,
with critical exponents a = d/2, z = 2, and only two nontrivial exponents v
and vr, which we have computed to second and first order in c = 2 — d,
respectively. We have also calculated the leading terms for the logarithmic
corrections appearing directly in two dimensions, and identified the active
phase with a Gaussian fixed point in terms of the effective coupling (3.59).
However, there remains the possibility that in one dimension the branching
process may actually be irrelevant near the annihilation fixed point, open-
ing up an entire inactive phase for 0 < a <ac.

4. BARW WITH TWO-PARTICLE ANNIHILATION AND EVEN
NUMBER OF OFFSPRING IN ONE DIMENSION

4.1. Computation of y0m Directly in d=1

In Section 3 it was shown that the RG eigenvalue ya which charac-
terizes the relevance of the branching rate at a = 0 may be computed within
the s = 2 — d expansion, and, although it is relevant in d = 2, y starts to
decrease as e increases, indicating that it may eventually change sign. In
this section we compute its value exactly in d= 1, by various methods, and
show that this is indeed the case.

In order to do this, we need to compute some dimensionless physical
quantity, at some particular length or time scale characterized by the nor-
malization scale K, as a function of the bare parameters am and A, and
understand how these latter should change as K is varied, keeping the
physical quantities fixed. Since we are only interested in the &(sm) terms in
the RG equations (where sm denotes the dimensionless counterpart of am,
see Section 3), we need to compute these physical quantities only to first

24 Cardy and Tauber

(for a related discussion of the crossover from a critical point to a Gaussian
theory, see ref. [30]). The effective coupling emerging here is



where the tilde emphasizes the difference from the definition used in
Section 3.

Pm + 1 ( t ) is given by the sum of all diagrams in the unshifted theory
given by Eq. (2.23), which, in time-ordered perturbation theory, have
exactly one particle at t = 0 and m + 1 particles when cut at time t. To
first order in am, there is only one branching vertex. Even so, the set
of diagrams which may contribute to this may be very complicated. An
important set is illustrated in Fig. 4. It is clear that, once the initial

Fig. 4. An important set of diagrams contributing to P m + 1 t ( t ) , i.e., to the renormalization of
the branching process, for m = 2.
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order in am, although the computation should be carried out, in principle,
to all orders in the annihilation rate /, since for d = 1 ). is not small at the
annihilation fixed point. Rather than the renormalized vertex functions
considered in Section 3, we shall consider a physically more accessible
quantity, namely the probability P m + 1 ( t ) that, given there is just one
particle at t = 0, there are exactly m + 1 particles found at time /. For
sufficiently small t, we have P m + 1 ( t ) ~ amt. Thus, we may define a renor-
malized version of am, in terms of the derivative d P m + 1 ( t ) / d t , evaluated at
some later time t= 1/D/c2. This is clearly quite different from the definition
used in Section 3; however, for universal quantities such as y , it should
yield identical results. In order to make this renormalized branching rate
dimensionless, we then define



branching has taken place, the remaining portion of any such diagram
corresponds to a solution of the quantum (m + 1 )-body problem for non-
relativistic bosons interacting with a short-range repulsive potential of
strength L For general values of d and /, this is intractable. However, in
one dimension, and in the limit A -> oo, these bosons should behave like
free fermions and therefore the problem be solvable.

Fortunately, it is just this limit which is appropriate to discuss the
behavior at the annihilation fixed point f = l *, for this corresponds to a
divergent bare coupling A. For d<2 there are no ultraviolet divergences in
the continuum theory, so that, on dimensional grounds, in one dimension
Pm +1 (t) has the form ( o j ) 2 ) F(X2t/D] + C(a2J, where F is some scaling
function. Hence [c.f. Eqs. (3.2), (3.8)] Zam = F'(l2/D2K2) + e>(sm), and
therefore

so that sm = amSm + 1( t = 1 /D K
2 ) + G(a2

m).
The asymptotic behavior of Sm+1 is simple to compute. This problem

has been studied in d=1 in several contexts before [31]. Denoting the

26 Cardy and Tauber

In this expression A is supposed to be expressed in terms of the renor-
malized coupling by

c.f. Eqs. (3.1) and (3.20). From these equations we see that, as l ->l* ,
A —> oo, and that this is the same as the limit t -> oo.

This limit is more easily understood in the model defined on a lattice.
For then two particles annihilate with probability one when they land on
the same site. In this case, the branching process does not make sense
unless the offspring are placed on different sites. Thus, we consider a
slightly different version of the model in which the dimensionful parameter
X is replaced by the lattice spacing b0. Once the m particles are placed on
neighboring sites, they execute independent random walks until two or
more of them fall on the same site and they annihilate. Let Sm + 1(t) be the
probability that all m + 1 particles, initially placed on neighboring sites,
survive until time /. Then we have the simple relation that



coordinates of the particles by (.x1, x2,..., xm+1), we observe that this vector
undergoes an isotropic random walk in the region x j+1 — x y > 0 of an
(m + 1 (-dimensional space, with absorbing boundaries along the hyper-
planes x J + 1 = X j , beginning at the point xj=jb0. S m + 1 ( t ) is just the
survival probability of this walk. The Green's function for this problem is
•=4 +1 G(m +1)(x1 - x0

1 xm - xo
m ; t), where s-Jm +1 is the completely anti-

symmetrizing operator on the m + 1 coordinates Xj, which ensures that the
boundary condition is satisfied, and G(m +1) is the usual (m + 1 (-dimen-
sional lattice Green's function on Zm+1 . In the long-time limit we may use
a continuum approximation to this, with care: The survival probability is
then given by integrating the full Green's function over the region
xj+1 > Xj. The result must be a function of only the scaled variables
(.v°-.Y°)/(Z)/)1/2, each of which is C ( b 0 / ( D t ) 1 / 2 ) «1. The antisymmetry
requires that the lowest term in an expansion in these variables must have
the form
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This gives the result for finite lattice spacing, in the limit /! —> oc. The
corresponding result in the continuum limit for finite A is obtained by the
simple replacement £0-> (2//1). The precise coefficient (which is not, in any
case, relevant to the present calculation) may be obtained by studying the
case m = 2, which is solvable in both limits.

Putting these results together, we then find that, in d= 1,

exactly.
The form of the result in Eq. (4.5) reflects the fermionic nature of the

particles for infinite L In fact, Eq. (4.6) may be derived more simply, if
more formally, using this. Once the branching event has occurred, the par-
ticles propagate as an (m+ 1 (-body fermionic state. If we express this in
terms of anticommuting annihilation and creation operators c i a n d c+

i on
each lattice site, the branching term in the hamiltonian has the form

[for m even; in the case of m odd, the product runs from —(m + 1 )/2 to
(m+ 1 )/2, omitting j = 0.] The continuum limit of this expression is found
by expanding in powers of jb0. This will be different from the bosonic case



because the anticommuting nature of the cf allows each derivative to
appear only once. Thus the lowest order, most relevant, term has the form

4.2. Results from an Exactly Solvable Case

Finally, we show how this result may, in the case m = 2, be derived
from an exactly solvable lattice version of the problem. This is the model
discussed by Takayasu and Tretyakov,(17) in which a site is chosen at ran-
dom, and, if there is a particle there, it is either moved to the left or right
(with probability p), or two offspring are placed on the neighboring sites
(with probability 1 —p). If the particles are interpreted as Ising domain
walls, this model is a discrete time version of a kinetic Ising model solved
by Droz, Racz, and Schmidt,(21) with Glauber dynamics at effectively zero
temperature, and Kawasaki dynamics at effectively infinite temperature. In
fact this model is always in an inactive phase (except for p = 0), and does
not exhibit the nontrivial transition to an active phase which is one of our
main concerns in this paper. As shown in ref. [22], it is necessary to
include another parameter in the model, which enhances the branching rate
relative to the diffusion process, in order to find such a transition.
Nevertheless, for the purposes of extracting the universal eigenvalue ya, at
the pure annihilation fixed point, this deficiency is unimportant.

Takayasu and Tretyakov(17) consider the probability Qr(t) that a
given interval of length r contains an even number of particles. Since they
assume translationally invariant initial conditions, it does not matter which
interval. In the Ising spin language, this is simply related to the correlation
function < v < + r > - They show that this satisfies the linear system of equa-
tions
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so that this term is multiplied by an effective expansion parameter
6™(m + 1)/2crm, and its dimension is modified in a way corresponding
precisely to the second term in Eq. (4.6).

where N is the number of sites. Although Takayasu and Tretyakov did not
analyze this equation in detail, it is not difficult to take a continuum limit
and extract the scaling behavior of the parameter 1 —p, which is the analog
of the branching rate <r = <r2. Introduce Q0 so that the second equation



above has the same form as the first, extended down to r = I. This means
taking

at r = 0. This corresponds then to a heat diffusion problem on the half-line
/• > 0, with a radiating boundary at r = 0. There is a length scale Lb =
(1 —p)b0 implicit in the boundary condition. For r» Lb, the solution at
late times will approach that with the Dirichlet condition Q(r = 0) = Q.
However this will be modified for r«Lb. The fact that 1 — p-^a scales
with length in this way immediately implies that ya= —1, consistent with
Eq. (4.6). In fact, for this continuum model, this is true to all orders in a.
This is because the nontrivial fixed point, determining the transition at
p = 0, is infinitely far away in this scheme.

Within this model, it is possible to determine P3(t) and hence check the
calculation given earlier in this section. If there is initially only one particle
in the system, then Qr(t = 0) = r/N. If p = 1 (no branching), this is an exact
steady state solution, corresponding to a uniform heat current. Let us find
the solution in perturbation theory in 1 — p ~ a, by writing Qr(t) = (r/N) +
(1 — p) f ( r , t) + 0(( 1 — p ) 2 ) . Then f obeys the diffusion equation, vanishes
at t = 0, and satisfies 2(1 -p)/N + 0((1 -p)2) = (1 -p)f at r = 0. It is thus
given in terms of the Green's function GD(t — t'; r, r'), satisfying Dirichlet
boundary conditions at r = 0, by

On rescaling t ->t=t /N and r->r = b0r, the continuum limit l/N->0,
b0 -> 0 now gives a simple diffusion equation

Field Theory of Branching and Annihilating Random Walks 29

for all real r > 0, together with boundary condition

To first order in <r, there are only one or three particles in the system, so
that the density is Q 1 ( t ) = (P1 + 3P3)/N = (1 + 2P3)/N. Hence P3(t) =
( N / 2 ) ( 1 - p ) f ( r = b0,t) + d ) ( ( 1 - p ) 2 ) , and the 0 ( 1 - p ) contribution to
P'3(t) therefore scales as t - 3 / 2 . Following through the RG procedure
described earlier then leads to ya = — 1 as before.



Within this model, it is possible to investigate the nature of the long-
time behavior to all orders in <r2 ~ 1 —p. If p < 1, the boundary temperature
Q0(t) will increase to a point where the heat current crossing the boundary
equals that coming from large r. Thus Q0( t) ~ 2( 1 — p )/N, so that the
density of particles, Q 1 ( t ) ~ [ 1 + 2 ( 1 —p)/p]/N. There is therefore a finite
average number of particles in the whole system, which diverges as p -> 0.
It is easy to check that this is the asymptotic solution for any finite odd
initial number of particles. On the other hand, if this number is even, then
initially Qr(0) = r(N — r)/N. In this case, the only steady state solution is
Qr = 0, and it is straightforward to check that the particle density
Q 1 ( t ) ~ t - 1 / 2 , as expected in the inactive phase.

5. TWO-OFFSPRING BARW: TRUNCATED LOOP EXPANSION

5.1. RG Flows to One-Loop Order

In Section 3.2 we saw that near dc = 2 dimensions, the branching rate
a for BARW with two offspring particles remains a relevant perturbation.
Thus the critical point is at <rc = 0, as in mean-field theory, and for any
positive branching rate there exists only the active phase, which is governed
by a Gaussian fixed point. On the other hand, the direct analysis of the one-
dimensional model in Section 4 unambiguously established the existence of
an inactive phase described by the power laws of the pure annihilation
model. Hence, in the inactive phase, a must constitute an irrelevant operator
in the RG sense. Clearly, this behavior cannot be constructed within an
expansion about the upper critical dimension dc = 2. Yet, by employing a
truncated loop expansion at fixed dimension we can establish a unifying RG
framework for the above results. To one-loop order, we shall indeed find a
new critical dimension d'c = 4/3, below which the inactive phase emerges.

The complete set of tree and one-loop diagrams for the two- and four-
point vertex functions is displayed in Fig. 5. As opposed to the analysis
in Section 3, we now retain the full dependence of both the vertices and
the propagators on the branching rate a. Upon applying an upper cutoff
tf in time for the processes depicted in Figs. 5(a, b), taking the Laplace
transform with respect to tf at the normalization point iw = 2Dk2, and
employing our previous definitions (3.1) and (3.2), one readily arrives at
the renormalization constants
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For s = 0, of course, these reduce to Eqs. (3.16) and (3.21) (for m = 2) as
computed at the annihilation fixed point (3.18). Within this truncated one-
loop expansion, we find for the RG eigenvalue of a at this fixed point

which indicates that indeed for d<d'c= 4/3 the branching processes
become irrelevant. Note that in one dimension, this happens to coincide
with the exact result (4.6) for m = 2. For d>d'c, however, the annihilation
fixed point is unstable with respect to branching, and s ( 1 ) will diverge
as l -> oo. In this case we expect the flow of f and s to be described by their

822/90/1-2-3

Fig. 5. Complete set of tree and one-loop diagrams for BARW with m = 2, for the two- and
four-point vertex functions (a) rw, (b) r^, (c) r^ (to first order in r0), (d) r^w, and
(e) * t)

Consequently, with Eqs. (3.7), (3.8) and £/ = /^//, we find the zeta
functions



With the definition (3.9) this leads to

which is identical to Eq. (3.58). Note that Eq. (5.8), which has been
obtained to leading order in an expansion for large a/Dx:2, correctly incor-
porates both the inactive (s = 0) and active (s->cc) phases, as do
Eqs. (5.3) and (5.4).

It is instructive to realize that one arrives at the same results for f,
and C« by considering the four-point vertex functions r^^(-q/2, —co/2;
-q/2, -co/2; q/2, co/2; q/2, co/2) and rw^(-q/2, -co/2; -q/2, -co/2;
— q/2, —co/2; 3q/2, 3co/2), respectively, at either the normalization point
q2/4 = K2, w = 0, or at q = 0, iw = 2Dk2. This comes about because the
expressions from the triangular loops in Figs. 5(d, e) may be written in the
form of the last term of Eq. (5.6), and hence do neither contribute at
the annihilation nor at the Gaussian active fixed point. Finally, the loop in
the fourth diagram in Fig. 5(d) carries no external momentum or frequency,
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naive scaling dimensions. Indeed, with f ( l ) ^ e ( d - 2 ) l and s(l)~e21,
we have f ( l ) l s ( l ) 2 - d / 2 ~ e - 2 1 ->0, and the fluctuation contributions to
Eqs. (5,3), (5.4) vanish. In Section 3.2, we had already anticipated these
flow functions describing the crossover to the asymptotically Gaussian
model that characterizes the active phase.

Before discussing the ensuing flow equations in more detail, we com-
pute the renormalization of the pair production rate as well. Notice that in
this calculation at fixed dimension, we cannot just restrict ourselves to
those diagrams that become ultraviolet divergent at dc = 2. The three
graphs in Fig. 5(c), computed with a lower cutoff ti lead to the Z factor

For (7 = 0, this obviously reduces to Eq. (3.15); on the other hand, as
a -> oo, we may expand the term in square brackets with the result



and thus has no influence on the zeta function. As in the one-loop £ expan-
sion near dc = 2, there is neither field renormalization nor renormalization
of the diffusion constant at this level, because the loop diagram for
r^(<{, to) (with no upper cutoff in the time domain), see Fig. 5(b), carries
no wave vector or frequency dependence.

Returning to Eqs. (5.3), (5.4), and (5.8), it is clear that the relevant
effective coupling is indeed g = t j (1 + s ) 2 - d / 2 , as defined in Eq. (3.59). In
the prospective inactive phase, with s -»0, we have g -> l, the coupling of
the pure annihilation model. On the other hand, if s diverges, we may con-
struct the beta function for g as follows:
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Thus, as explained above, despite both f(l) and s ( l ) diverging according to
their naive scaling dimensions, there is a stable Gaussian fixed point g* = 0
describing the active phase. Yet, Eq. (5.9) yields the additional nontrivial
fixed point

As

assumes the value — 2 at g = g*, this new fixed point turns out to be
infrared-unstable. As the fixed-point values for the new effective coupling
are limited by those of the annihilation rate, which in turn has as upper
bound l* = 2 — d (for according to Eq. (4.3) this already corresponds to
an infinitely large bare coupling), g* enters the physical regime for d^
d'c = 4/3, precisely when the annihilation fixed point and the associated
inactive phase become stable. The nontrivial unstable fixed point then
governs the dynamical phase transition between the power-law inactive and
the Gaussian active phases.

The flow diagram in d= 1, as obtained by numerically solving the flow
equations, is shown in Fig. 6. The flows in the upper left half describe the
active phase with both s(l) -» oo and l(l) -* oo, but the effective coupling g
approaching a Gaussian fixed point, g(l) -»0; on the other hand, the trajec-
tories in the lower right part of the figure correspond to the inactive phase,
with s(l)-»0 and g(l) - > l ( l ) - > l * = 2 -d (annihilation fixed point) as
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Fig. 6. Flow diagram s2 d/2 vs. f for BARW with m = 2 in d=1. For the flows depicted
here, the initial values for the couplings are /"(()) = 0.01, with (clockwise) s(0) = 0.01 (long-
dashed), i(0)=0.0005 (dotted), i(0) = 0.00025 (dashed), s(0) = 0.0002 (solid), .s(O) = 0.00015
(dotted), j(0) = 0.0001 (dashed), and j(0) = 0.00005 (solid).

l->oo. Notice the remarkable flows in the inactive phase, with the RG
trajectories curling about the annihilation fixed point. The unstable fixed
point with l(l) o c s ( l ) 2 ~ d / 2 (for large f and s) appears as a separatrix
separating the basins of attraction of the fixed points associated with the
inactive and active phase, respectively. For any dimension d<d'c, the flow
diagram would look qualitatively similar. At d = d^.=4/3 (to this order)
itself, there appears an attractive line of fixed points with £/ = £,. = 0,
starting at the point l = 2/3, s = 0. For d> d'c, all the flow trajectories tend
to the Gaussian fixed point g* = 0 (with both t, s -> oo).

The ensuing phase diagram as function of space dimension is displayed
in Fig. 7. For d > d'. and any nonzero branching rate there exists only the
active phase. For d>dc = 2, the transition at ac — 0 is described by the
mean-field exponents, see Section 1, while for d'e ̂  d^ 2 one finds the non-
trivial critical exponents (logarithmic corrections at dc = 2) evaluated in
Section 3.2. Only for d<d'c, when g*</* = 2 — d and the annihilation
fixed point becomes stable for sufficiently small values of s, the inactive
phase which is governed by the power laws of the pure annihilation model
emerges. The critical behavior at the dynamic phase transition with ac > 0



Fig. 7. Phase diagram for BARW with even m as function of dimension.

Collecting the results (5.3), (5.4), (5.8), and (5.11), we then find the following
RG eigenvalues at the unstable fixed point g*,
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is characterized by exponents belonging to a novel universality class. In
the following subsection, we shall analyze the scaling behavior at this
transition, and compute the critical exponents to one-loop order. Although
the actual values we find for these exponents turn out to be rather poor
estimates, as a consequence of the absence of any small expansion param-
eter, we believe that the qualitative features of the phase diagram, and
specifically the mechanism for how the inactive phase becomes possible, are
correctly encoded in the truncated loop expansion.

5.2. Scaling Analysis and Critical Exponents

We now want to explore the critical behavior in the vicinity of the
transition described by the unstable fixed point g=g*, Eq. (5.10). We thus
introduce

and note that because of g* de(l)/dl = B g ( g ( l ) ) = - g * E ( l ) d B g ( g ) / d g \ g = g .
we identify the corresponding zeta function as



remains valid. In order to compute the exponents at T = 0, we write the
solution of the RG equation for the density in the form

n(K, t, s, t)=K
de-dln(K, t ( l ) , s(l), t(K2/D) e-21) (5.19)

By itself, this is not sufficient to determine the exponents, since s(l) and /(/)
do not themselves flow to fixed points and the dependence of n on these,
even at early times, is not known a priori. In the active phase, however, we
know that they do flow to a region in which mean-field theory is valid.
This predicts that the right hand side of (5.19) has the form s ( l ) / l ( l ) times
a function of the combination t(K2/D) e - 2 l s ( l ) . In the vicinity of g*, then,
(5.19) becomes

Upon choosing the matching condition e - 1 = \ e \ l / y c , this implies that we
may identify the critical exponents, as defined in Section 1, as
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We remark that y^ and ya are not independent, but fixed by the condition
that B g (g*>0) = 0, and hence y^ = (2-d/2) ya. Notice also that to one-
loop order there are no anomalous dimensions for the diffusion constant or
the fields themselves.

In identifying these RG eigenvalues with the critical exponents,
however, we have to be careful as now the critical point is shifted away
from <rc = 0 to gc = g*, and we therefore cannot apply Eqs. (3.33) and
(3.36). In general, the critical exponents will rather depend on ye, as well
as on y^ and ya. Only the exponent v, is not affected by these modifica-
tions, and therefore



Notice that lengths now scale as e ( l - y / 2 ) l . The mean-field value for the
dynamic exponent z naturally follows from the absence of diffusion con-
stant renormalization.

We emphasize that as a consequence of the appearance of the
dangerous irrelevant variable 1 /s, we cannot unambiguously extract the
exponents defining the power laws at the critical point itself, such as a. In
addition, this also precludes us to provide a sound foundation based on the
renormalization group for scaling relations like B = zva(11, 19,22) for the
dynamic phase transition for d<d'c. Such scaling relations would follow
only if the mean-field dependence s ( l ) / l ( l ) were also to be valid as both s(l)
and l(l) grow without bound along the critical line g = g*. If the fixed
point occurred at finite values of these quantities, it would be reasonable
to assume that the right hand side of Eq. (5.19) does have this mean-field
form, as it is to be evaluated at some finite rescaled time. It would be inter-
esting to look carefully for possible violations of these scaling laws within
simulations.

Upon inserting Eqs. (5.14)-(5.17), we find the following results as
function of dimension,
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At the borderline dimension d'c=4/3, the value for the critical exponent
vr = 3/8 coincides with the one found in the e expansion about dc = 2 (see
Section 3.2). On the other hand, upon approaching d'c from below, one has
v = 1/2 and B = 2/3, which has to be contrasted with v, B -» cc as d\ d'c. In
the more interesting physical dimension d = 1 we find to one-loop order

and thus

These numerical values, compared to the actual simulation results(11,17,22,26)

are generally rather poor, with the remarkable exception of vr. Keeping in
mind that the truncated loop expansion, with no small parameter at hand,



constitutes an uncontrolled approximation scheme, the unsatisfying accuracy
may not be too surprising.

5.3. Some Remarks Regarding Higher Orders in the Truncated
Loop Expansion

It is by no means clear that including higher loop orders in the above
analysis would yield considerably better results for the critical exponents,
given that there is no a priori small expansion parameter present at all. Yet
some general remarks about a possible extension, say, to two-loop order,
are in place here.

To two-loop order, one would obviously expect both field renormal-
ization and diffusion constant renormalization to appear, e.g., from the
frequency and wave vector dependence of the loop in the fourth diagram
of Fig. 3(b), or more generally, from the set of graphs depicted in Fig. 4.
Defining

and would thus allows for a nontrivial value of the dynamic exponent as
well.

It is, however, far from obvious that an extension of the above one-
loop analysis to higher orders in the perturbation expansion is feasible.
Certainly, at the annihilation fixed point describing the inactive phase, a
loop expansion is well-defined to any order. Also, the Gaussian fixed point
is trivially described by the naive scaling dimensions of the model
parameters. Yet the unstable fixed point governing the dynamic phase
transition requires a subtle balancing of the divergences of the couplings
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this will imply two additional RG eigenvalues yll/= -£* and yD= -££. As
may be inferred from Eqs. (5.19) and (5.20), their appearance modifies the
previous scaling relations (5.21)-(5.23) to



s(l) and l ( l ) , as encoded in the appearance of the new effective coupling
g(l). To one-loop order, the expansion parameter in the bare theory is
(h/D)l(K2 + ff/D)1-d/2, and hence the effective coupling in the flow function
becomes g = l/(1 + s ) 2 - d / 2 . The two-loop diagrams, then, are proportional
to (A/Z))2/(/c2 + a / D ) 2 - d , and thus their contributions to the zeta functions
proportional to f 2 / ( 1 + s ) 3 - d = g2(1 +s)—which diverges at the transition.
It appears, therefore, that in an expansion in 1/s, the leading terms would
have to cancel in order to render the loop expansion well-defined.
However, although it may be shown for f, that this is fact true for those
two-loop diagrams that in the frequency domain are product of the one-
loop terms, this appears not to be the case for the nested loop diagrams
such as the fourth graph in Fig. 3(b), and perhaps the summation of an
entire series of such diagrams, see Fig. 4, might be indispensable. Despite
some effort, we therefore did not succeed in extending our one-loop
analysis further, or even to demonstrate that there exists a meaningful trun-
cated two-loop theory at all.

The motivation behind such a generalization is that we found in Section 5
that in the interesting physical case of N = 1 in d = 1 the loop expansion
was uncontrolled and does not lead to reliable values for the exponents,
even though it correctly predicts the existence of a transition. As in the case
of N-component magnets, then, one might hope that there exists an
N-species generalization of the model with m = 2 introduced in Section 2,
which becomes exactly solvable in the limit N-* cc, yet which still retains
the essential physics. Unfortunately this does not seem to be so. There
appears to be no simple way of generalizing the action (3.28) (with m = 2)
so that it possesses an O(N) symmetry as in the magnetic case. The highest
symmetry that can be embedded while at the same time retaining the con-
servation modulo 2 of each species is SN, the permutation symmetry of the
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6. GENERALIZATION TO N SPECIES OF PARTICLES

We now generalize the BARW with k = m = 2 to N species of particles
tx.= l,...,N, with only identical particles annihilating each other, and two
different types of branching processes,



When a' = (N — 1) <r, the branching terms do in fact exhibit an O(N) sym-
metry which generalizes the Z2 symmetry of the original model. However,
the annihilation terms inevitably violate it, and any attempt to rectify this
falls foul of the requirement of probability conservation. This has the con-
sequence that the symmetry of the branching terms is not preserved under
renormalization. Physically, this is because after the first process (6.2),
any pair of the three outgoing particles may annihilate, so the chances of
observing three particles after some amount of time are reduced as com-
pared with process (6,3), where only one pair may annihilate.

The two-loop calculation of Section 3.2 is readily generalized to N par-
ticle "flavors" by modifying the appropriate combinatorial factors in the
evaluation of the Feynman diagrams depicted in Fig. 3. Near two dimen-
sions, this yields the Z factors (3.38), (3.39) as before, while the graphs in
Fig. 3(b) for the new branching process (6.3) give

Consequently, with the definitions used in Section 3, the beta function
(3.16) and fixed point (3.18), as well as Eq. (3.41) remain unaltered, while
the additional zeta function reads

40 Cardy and Tauber

N species. This is clearly exhibited by the allowed reactions above. Note,
however, that the permutation symmetry allows different possible rates for
the reactions in (6.2) and (6.3). The symmetries of this model are most
clearly seen in the form of hamiltonian density in the second-quantized
formalism:

and therefore the RG eigenvalue of the branching rate a' at the annihila-
tion fixed point is

Upon comparing this result with (3.43), we see that the branching with
identical offspring (6.2) is irrelevant as compared to the production of dif-
ferent particle "flavors" (6.3): for l-> oo, one has



Therefore the process (6.3) is going to dominate the long-time behavior,
and we may effectively set a = 0, but retain a' > 0, for any N > 1. The
remaining Feynman diagrams are then identical to those that would be
obtained in the limit N-»oo, and one therefore expects that actually all
reactions with N> 1 are asymptotically described by the model with
infinitely many particle species and sole branching process (6.3).

The above model in the limit <r = 0, or equivalently, for N-> oo, has a
considerably simpler structure as compared to the N=l case, because
"nested" diagrams as, e.g., the last graph in Fig. 3(b) do not appear any
more. Consequently, all fluctuation contributions to the propagator may be
absorbed into a renormalization of the "mass" a. Therefore one is left with
the task of summing an infinite series of branching "bubble" diagrams
("cactus" graphs). The most convenient way of achieving this is to write
down self-consistent Bethe-Salpeter type equations for the annihilation,
branching, and pair production rates. Graphically, these are represented in
Fig. 8(a-c), respectively. The corresponding analytic expressions read

which immediately implies that Eqs. (3.16), (3.22), and (6.7) hold to all
orders in l,
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which are readily solved by

If we now evaluate the integral at the normalization point a'K/D = K2, we
arrive at the exact result
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Fig. 8. Bethe-Salpeter equations for (a) the annihilation rate /, (b) the branching rate CT',
and (c) the pair production rate i of the N species model in the limit N -> oc.

Thus in this model, a'c = Tc = 0, and the only nontrivial RG eigenvalues are

which determine the divergence of the correlation length as either a' -> 0 or
T-»0.

We have thereby demonstrated that the above N-species generalization
of the BARW with m = 2 leads to a new universality class, which for all
N>1 is asymptotically characterized by the model with N-><X). In this
model, the critical point remains at vanishing branching and pair produc-
tion rate, and for d < 2 its critical behavior is governed by the exponents

In dc = 2 dimensions, one finds a logarithmic correction for the density
decay at the critical point, just as in Eq. (3.54).

The N -> oo limit of the model defined by the processes (6.1)-(6.4)
may in fact be solved directly, without going through the renormalization
group machinery. This is based on the simple observation that in the reac-
tion Aa->Aa +AB+ AB, the two products AB are far more likely to
annihilate against each other, since they have the same flavor index, than
against the remaining Aa, or indeed any other particle in the system, which
is unlikely to have a matching flavor index. In the limit N ->oo, this



where L(t — t')dt is the probability that two particles, created at time t',
annihilate in the interval ( t , t + dt). Note that L(t)= —S'2(t), where, as in
Section 4, S2(t-t') is the survival probability at time ; for two isolated
particles produced at time t'. The factor of 1 -L(t-t') in the last term
ensures that the particles have not annihilated at some earlier time.

Equation (6.18) may be solved simply by Laplace transform. Defining
n(p) = J" n(t) e-p dt, and similarly for L(t), one finds
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becomes overwhelmingly the case. Now the average particle density can
change by branching processes, which will always be proportional to the
existing local density, and annihilation processes. These latter are either
between particles which are siblings, that is they are products of the same
branching event in the past, and which will not, in this limit, annihilate
against any other particle; or they are between particles which are from
independent branching events. In this case they are unlikely to have the
same flavor index, so that this term is suppressed by a factor 1 / N ; however,
it is proportional to the square of the mean density, which is itself 0(N),
and therefore it also gains a factor of N relative to the linear terms. If the
particles come from independent branching events, we may also, to leading
order in 1/N, neglect the correlation between these events.

One may therefore write down an integral equation for the time evolu-
tion of the mean density n(t) :

where L(p) is given by a simple sum of bubble diagrams as

and I(p) = \k 1 / ( p + 2Dk2). Although (6.18) cannot be solved in closed
form, the various critical exponents may easily be deduced. If we begin
from an initial state when n(0) is small, we may initially neglect the non-
linear term to find that, whenever a' >0, n(p) has a pole for positive real
p at the solution p=p0(ff') of

The density therefore increases exponentially at a rate ep<>'. When d > 2,
I(p) is analytic at p = 0 and we see that p0oc0-'. When d<2, p0cca'zv,
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7. BARW WITH ODD NUMBER OF OFFSPRING

7.1. Mapping to Reggeon Field Theory for Directed Percolation

In this section, we consider the case of m odd, which turns out to be
quite different from the case of even m. For odd m, there is no "parity"
symmetry and one might expect the transition from an inactive state,
provided it occurs at some nontrivial value of the branching rate am, to be
in the directed percolation (DP) universality class, as a consequence of the
generated particle decay processes A -» 0. This in fact is what we find in
low dimensions, but there are subtle issues connected with the fact that
these decay processes are themselves fluctuation-induced, and thus propor-
tional to the branching rate am. Therefore the very existence of a nontrivial
transition must depend on fluctuation effects, which are expected to be
important only when d^2. As pointed out in Section 1, the mean-field
equation always predicts an active state for all am > 0, and is expected to
be valid, at least in the pure annihilation problem, for d > 2. Indeed we find
that only for dimensions d < 2, fluctuations are strong enough to produce
a nonzero critical branching rate ac > 0, and consequently a DP phase
transition separating the active from the inactive phase. This is despite the
fact that the upper critical dimension for the DP transition itself is dc = 4.

For these reasons we investigate this problem in the vicinity of two
dimensions. As was shown in Section 3, from an initial model with a given
value of m > 1, under renormalization the other processes with numbers of
offspring m — 2, m-4,..., 1, — 1 are generated, compare Fig. 2(d). Therefore
we shall begin by considering the simplest case m = 1. We start by writing
the interaction terms appearing under the integral in the effective action
Eq. (3.27):
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where zv = 2/d, and for d = 2, p0 ~ a'/ln( 1/CT'), all in accord with the renor-
malization group analysis presented above. For later times, this exponen-
tial growth is capped by the nonlinear term and the system reaches a
steady state. Since the factor 1 —L(p) is common to both terms on the
right hand side of (6.19), the steady state density behaves simply as af,
where B = 1 irrespective of the value of d.

The last term corresponds to the process A -» 0, which, although not pre-
sent in the original model, is generated by the combined processes A -»2A,



Hence u becomes marginal in d = 4, the upper critical dimension for DP,
and indeed one would argue that the last term in Eq. (7.4) should then be
irrelevant close to the DP transition by power counting. Thus, provided
that cr lc>0, we have shown that the ensuing dynamic phase transition
from the inactive to the active state is characterized by the critical
exponents of the DP universality class. Notice that both the active and the
inactive phase are characterized by exponential long-time behavior, as
opposed to the power-law inactive phase for BARW with even m. At first
sight counterintuitively, the branching process accelerates the particle den-
sity decay in the inactive phase, due to the fluctuation-induced generation
of spontaneous particle decay processes.

Note, however, that in the bare theory the "mass" term (the coefficient
of $i/0 is negative, since U = 0 in that case. This would seem to imply that
the model is immediately in its active phase as soon as a^ > 0, and hence
the critical point at a1c = 0, which would render the rescaling (7.3) obsolete.
However, this argument neglects renormalization effects. It may well be
that the renormalized quantity UR — G1R is positive. As we shall argue, this
is in fact the case for d^2 and sufficiently small < T J ,

7.2. Summation of the Leading Singularities near Two
Dimensions

We are free to study the renormalization effects in either version of the
theory Eq. (7.1) or Eq. (7.2). In fact, this is much simpler in the former,
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It is also important to record the form of the interaction in terms of
the shifted field \j/ = i£ — 1. This is

which, apart from the last term, has the form of the effective interaction for
the (Reggeon) field theory of directed percolation.(13) With the simple
rescaling

one arrives at

with the new effective coupling for the three-point vertices
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Fig. 9. Most singular (bubble) diagrams for the renormalization of (a) the particle decay
rate U, (b) the branching rate a1, and (c) the propagator (mass) U +CT for BARW with m = 1
near d,, = 2 dimensions.

because it will turn out that the effective expansion parameter is A, and also
because the mass term in that case is U + a1, which is always positive,
allowing for a perturbative expansion with a meaningful propagator. Even
so, it is impossible to compute the renormalization to all orders. Instead,
close to two dimensions we adopt the strategy of retaining only the most
singular diagrams as e = 2 — d -»0, at each order in L It is not difficult
to see that these are given by the iterated bubble diagrams shown in
Fig. 9(a, b). Notice that all the propagators are renormalized by a series of
processes as depicted in Fig. 9(c), but all these side branches may be
resummed with the effect of replacing the mass in the internal propagator
by its renormalized value. In the rest of this section, we set the diffusion
constant D = l, since it is not renormalized at the order we consider. The
ensuing geometric sums then give the following simple self-consistent equa-
tions, to leading order in e,



This is one of the important results of this paper. It shows how essen-
tial it is to take into account fluctuation effects in studying this and similar
processes. It appears to be in accord with recent detailed simulations,(27)

even though initial work(17) seemed to indicate that ac might be zero.
Finally, for d>2, the same approximation (which is, however, less
justified), gives

822/90/1-2-4
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Note that UR + a1R — U + ffl in this approximation. With U = 0 originally, this
amounts precisely to the summation of branched diagrams [see Fig. 9(c) ]
mentioned above. However, we are interested in the renormalized value of
the DP mass (c.f. (7.4)

where we have used the above result, with U=0. From Eq. (7.8) we see
that, for sufficiently small < 7 , , the DP mass is in fact positive, indicating that
the system is in fact in the inactive phase. The transition to the active phase
does not happen until a, =alc, where, in this approximation,

Although we would not expect this result to be quantitatively correct for
e= 1, the power of ). is exact and is dictated by dimensional analysis. Thus
we expect a DP transition at a nontrivial value of <r, for all d <2. This
transition is driven by the fluctuations in the annihilation process.

Since the annihilation rate is (marginally) irrelevant exactly in two
dimensions, it is an interesting question whether it is able to drive a DP
transition in this case. The single bubbles are then logarithmically
divergent, and Eq. (7.8) is replaced by

where A is a wave number cutoff (of the order of the inverse lattice spacing
b-1

0 ). We see that indeed there is a nontrivial transition, at



In this case, as long as k A d - 2 « 1, the numerator will be negative even at
<T1 = 0, and the system will be in the active phase for all <r, > 0. There does
appear to be the possibility of a nontrivial transition at larger values of the
annihilation rate, when A.Ad - 2»1, but it should be noted that our
approximation of summing the leading bubble diagrams breaks down long
before then, and that it may be argued that infinite annihilation rate on the
lattice already corresponds to A A d - 2 ~ 1 in the continuum theory. There is
no evidence for a nontrivial transition in d—l> from the simulations.(17)

7.3. RG Approach

The same problem, with m=1, may be attacked using the RG loop
expansion used in Section 3. Once again, we work in the unshifted theory
given by Eq. (7.1). The one-loop diagrams contributing to the renormal-
ization of 2., a1, and U are shown in Fig. 2(a, b, d), and in fact only
the combinatorial factors differ from the case m = 2 studied above. Defining
dimensionless renormalized couplings as in Eqs. (3.1), (3.2), and in addition

Note that the effective dimensionless mass appearing in the denominators
is now M + S1.

Adding the last two equations, we see that M ( l ) + S 1 ( l ) = al(0) e21

(equivalent to our earlier result that the dimensionful mass does not
renormalize). Although the remaining equations cannot be solved by quad-
rature, we may approximate their solution by setting 1 + M + s1=1 for
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where

we find the flow equations



We may now distinguish various cases. For d<2 and sufficiently small ff{

(large l0), the exponent in Eq. (7.18) behaves like l*l0« 1, so that the DP
mass is positive, consistent with the system being in the inactive phase. For
large CT1, however, the exponent is small and the DP mass is negative. The
critical point, in this approximation, occurs when

where, once again, the precise numerical factor is not to be taken too
seriously.

In exactly two dimensions, on the other hand, J^0 f(l') dl' ~ ln( 1 + Cdll0),
c.f. Eq. (3.46), so that <r1(,~e~4'r/a, in precise agreement with the summed
bubbles calculation, Eq. (7.11). The only corrections to this formula are
seen to come from higher order loops, but, since l is now marginally irrele-
vant, it should asymptotically become exact as A -»0. Finally, we may use
the criterion Eq. (7.19) to explore the case d>2. In that case we may write
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l < l0 ~ 1/2 ln( l/<7,). Beyond that point, the couplings simply evolve according
to their simple scaling behavior at the Gaussian fixed point. The equations
may now be integrated, with the result for the dimensionless renormalized
DP mass

For small initial annihilation rate X we have t ( l ' } ~ CdXeeV. This gives
<7,«.~e~2 /»~(C r fA/eln2)2 / e , in agreement with Eq. (7.9) apart from the
factor of In 2, which may be ascribed to the crudeness of the truncation
procedure described above. Thus, as expected, the one-loop RG equations
correctly sum the most singular diagrams in 1/e in the weak coupling limit.
However, from Eq. (7.19) we may also extract the behavior at strong
coupling, because then /( / ' ) ~/* =e. In that case we find

Since now l( l 0)->0 as <r 1 -»0, we see that there is a possibility of
finding the inactive phase for sufficiently small, but nonzero er, only if
ln[(|e| + CdA)/|e|] >ln 2, i.e., C dk>\e\ . Once again, of course, one must



question the validity of the loop expansion in this region. However, the
result does indicate that the inactive phase does not exist for nonzero a1 at
weak coupling.

7.4. Larger Odd Values of m

The advantage of the RG loop expansion approach outlined above for
the case m = 1 is that it may readily be extended to larger values of m,
where the identification and resummation of the most singular diagrams is
somewhat more difficult. The only case that we shall treat explicitly here is
m = 3. In that case we have a branching rate a3, corresponding to a dimen-
sionless renormalized coupling s3, but, as before, couplings CT, and /u are
generated. (Note that a2 is also generated, but only at higher orders, and
in any case this is irrelevant near d=2.) Once again, the one-loop diagrams
are simple, see Fig. 2(a, b, d) and differ from those for m = 1 only by com-
binatorial factors. The RG flow equations are
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Notice that the mass term is now M + s1 +s3. As before, we see that this
combination obeys a simple equation, and that it grows exponentially like
e21. Thus, once again, we may make the same approximation and ignore it
in the denominators up to l0~ 1/2 ln(l/<73). The remaining equations may
now be solved by quadrature. We give the results only for the case d = 2.
If we shift the fields we now find that the DP mass is A =U — a1 — 3er3. The
dimensionless renormalized version of this quantity at scale l0 then turns
out to be

Once again, this is positive for large l0 (small a3), indicating the existence
of an inactive phase, while it is clearly negative for sufficiently small large <73.



This is expected to be asymptotically exact (apart from a possible prefactor)
as A -> 0. Note that, compared with the case m = 1, the transition occurs at
a much smaller value of the branching rate. This is because the generation
of the process A -> 0 now happens only at higher order in the annihilation
rate A, which is asymptotically small. This pattern of the decrease of amc

with increasing m continues, and is consistent with what is observed in
simulations.(17) These calculations for larger m may also be extended to the
cases d ^ 2, with similar results as for m = 1.

8. BARW WITH THREE-PARTICLE ANNIHILATION

We finally briefly discuss the case of BARW with k = 3, i.e., three-par-
ticle annihilation processes instead of the two-particle annihilation
A + A -» 0 which has concerned us in the bulk of this paper. In physical
dimensions d~^ 1, BARW with any higher value of A; will either be satisfac-
torily described by the mean-field rate equation (1.4), according to the fact
that the annihilation vertex AA has upper critical dimension dc = 2/(k— 1),
c.f. Eq. (1.15), or simply generate the processes with lower k, see below.

We may of course largely follow the arguments given in the preceding
sections. First, via a combination of branching and annihilation the
branching processes with m offspring particles (rate am) now generate all
the lower branching processes ocerm_3 , <7m_6 , etc., see Fig. 10(a). Clearly,
the reactions with lowest offspring number will be the most relevant ones,
and therefore we shall essentially have to discuss only the cases m = 1,
m = 2, and m = 3. For the latter, and equally for any m = 31, l = 1, 2,..., the
branching and annihilation reactions conserve the particle number locally
modulo 3, and this symmetry precludes a fluctuation-induced generation of
spontaneous particle decay processes, which might lead to a phase trans-
ition of the DP universality class. In analogy with the situation for even m
in the case k = 2, there might potentially arise a new nontrivial universality
class below some novel critical dimension d ' c < 1 ; yet in one dimension one
merely expects logarithmic corrections to the mean-field behavior.

This leaves us with the cases m = 2 and m=1 (or, more generally,
m = 2 mod 3 and m = 1 mod 3). Here, the above special symmetry is not
present, and via the processes depicted in Fig. 10(b) and (c), respectively,
the single-particle decay A -» 0 is generated. For m = 2, this already hap-
pens to lowest order in the branching and annihilation vertices, 0(ff2^3),

The zero must be found numerically, and occurs at M0/2n x 1 .42, corre-
sponding to
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see Fig. 10(b). In addition, the processes A -> A + A and A + A -> 0 also
become generated, but require diagrams of &(ffl/.3) and ^(CT^), respec-
tively. This leads to all the terms required for Reggeon field theory to
represent the effective action for the ensuing dynamic phase transition,
provided er 2 f>0 (compare Section 7). Yet as already the lowest-order
diagram in Fig. 10(b) is (logarithmically) divergent in one dimension,
following the arguments given for the odd-offspring BARW with k = 2 we
expect such a nontrivial transition to occur in d < 1, with the exponents of
the DP universality class. In fact, as the BARW with k = 2 and m = 1
becomes generated, albeit to some high order in the original couplings, the
DP transition may actually persist for any d^2. For the case m = 1, the
lowest-order diagram, 6(ff\^}, diverges already for d^2 dimensions, and
as again the process A + A -> 0 is generated via diagrams of order
&(a\k\), this maps onto BARW with k = 2 and odd m and hence one has
to expect a nontrivial phase transition of the DP universality class for d^ 2
dimensions.

9. SUMMARY AND CONCLUSIONS

We have studied branching and annihilating random walks defined by
the combined processes 2A-* 0 (k = 2), A ^ ( m + 1 ] A with both even and
odd offspring number m in low dimensions, where fluctuation effects and
particle anticorrelations are crucial. We have employed a field-theoretic
representation of the corresponding diffusion-limited reaction problem,
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Fig. 10. Diagrams for BARW with 3A -> 0 for the generation (a) of the branching process
cc a,,,., from a,,, and X-,,, (b) of the particle decay A -» 0 for the case m = 2, and (c) for m = 1.



derived from the classical master equation. Apart from the continuum limit,
the derivation of the action requires no further approximations (Section 2).

While the mean-field rate equation predicts the existence of an active
phase only for any nonzero value am of the branching rate (Section 1), in
low dimensions fluctuations lead to the emergence of a nontrivial inactive
phase as well, and a dynamic phase transition at a critical value GC (for
fixed annihilation rate /I and diffusion constant D). As a consequence of the
local parity conservation in the case of even m, which is reflected in a dis-
crete symmetry in the action, both the inactive phase and the critical
properties at the nonequilibrium phase transition differ drastically for even
and odd m, respectively, as was already known from numerical simula-
tions.(11,17,19,22,26,27) Using diagrammatic summations and renormalization
group methods, we believe we have provided at least a qualitatively satis-
fying understanding of these different universality classes.(9)

For odd m and d < 2, including the borderline dimension dc = 2, fluc-
tuations generate the spontaneous decay A -» 0, as well as branching pro-
cesses with all odd offspring numbers smaller than m. This single-particle
decay provides a very effective mechanism counteracting the particle
production through branching, and induces a nontrivial dynamic phase
transition characterized by the critical exponents of the directed percola-
tion universality class, as has been established in simulations.(10,17,26,27) In
the emerging inactive phase, the spontaneous decay processes dominate,
and thus the long-time decay is exponential, i.e. faster than in the pure
annihilation model without the branching processes. For dimensions d > 2,
we find ac = 0, and the system is essentially described by mean-field theory.
Thus the values of the critical exponents display a discontinuous jump at
dc = 2 (for the upper critical dimension of directed percolation is dc = 4).
Precisely in two dimensions, we still predict a non-trivial transition with
DP exponents, and first indications for this have recently been found.(27)

Indeed, even the tendency that ac should decrease with increasing m is at
least qualitatively explained by our results (Section 7).

While the case of odd m is thus well understood now, there remain a
number of open questions for even offspring numbers. Similarly to the
situation for odd m, the even m universality class is determined by the
lowest possible value m = 2. Our analysis shows that near two dimensions,
the branching rate always remains a relevant quantity (i.e., an active phase
governed by exponential correlations), and thus necessarily ac = 0. In
Section 3, we have evaluated the critical exponents to second order in
s = 2-d, and have discussed the logarithmic corrections arising at the criti-
cal dimension dc = 2. On the other hand, a direct and exact computation
in one dimension (Section 4) establishes that the branching rate is actually
irrelevant in the limit A -» oo, which implies the existence of an inactive
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phase only in this special situation, governed by the power laws of the pure
annihilation model (see also ref. [17]). Therefore a new critical dimension
1 < d'c < 2 must exist, below which there appears a dynamic phase transi-
tion to a power-law inactive phase, see Fig. 7.

Within the framework of a truncated loop expansion to one-loop
order (Section 5), we may describe the above scenario as a function of
dimension d at least qualitatively; in this approximation, we find d'c = 4/3.
Although the structure of the phase diagram seems to be correct, the ensu-
ing one-loop critical exponents in this rather uncontrolled approximation
are well off the numerically found values.(17,19,22,23) Yet unfortunately, we
were unable to improve on our approximations, e.g. by extending the
calculations to the two-loop level. Also, the emergence of dangerous irrele-
vant variables precludes the firm establishment of scaling relations(22)

relating exponents in the active phase, say, and those at the critical point.
Although so far there has been no evidence for this, the possibility of viola-
tions of such scaling laws should be carefully and thoroughly reinvestigated
in numerical simulations. It would also certainly be highly desirable to
possibly design a different renormalization scheme to address the even m
universality class. The desirability of going beyond the one-loop approxi-
mation is even clearer in the inactive phase, where the density is expected
to decay as A/(DRt)d/2, for d<2, and DR is a renormalized diffusion
constant. To one-loop order, no such renormalization takes place. It is
therefore not possible to establish postulated scaling laws relating the
manner in which DR is supposed to behave near the critical point to the
other exponents defined in the active phase. The inactive phase is also
interesting in that it is expected to exhibit a kind of spontaneous symmetry
breaking as a result of the parity invariance of the dynamics. That is, if we
start with a state with a even number of particles (equivalent to imposing
periodic boundary conditions on the corresponding Ising model), the
asymptotic state is the trivial absorbing state (fully ordered in the Ising
language). But if we begin with an odd number of particles this cannot
happen: instead we expect the system to evolve to a state with a finite
average total number of particles. Once again, one may postulate scaling
laws relating the power law divergence of this number as the critical point
is approached to other exponents, and it would be very useful to have a
more systematic derivation of these, which is so far lacking in our analysis.
The study of the nature of the inactive phase seems to be particularly inter-
esting, as numerical studies appear to indicate the existence of unexpected
simplifications.(32)

As discussed in Section 6, an obvious generalization to N > 2 particle
"flavors" leads to qualitatively new behavior, governed by the exactly
computable exponents of the limit N-> oo. To our knowledge, this case of
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